Die Kristallstruktur von Pd₂Hg₅

Von

P. Ettmaver

Aus dem Institut für chemische Technologie anorganischer Stoffe an der Technischen Hochschule Wien

(Eingegangen am 5, März 1965)

Pulveraufnahmen von Pd_2Hg_5 können tetragonal mit $a=9,46_3$ Å, $c=3,03_1$ Å, $c/a=0,320_3$ indiziert werden. Die Elementarzelle enthält 14 Atome. Als wahrscheinliche Raumgruppe wird $P4/\text{mbm}-D_{4h}^5$ angenommen mit 8 Quecksilberatomen in der Punktlage 8i) 0,040; 0,220; 0,000; 2 Quecksilberatomen in 2d) 0,500; 0,000; 0,500 und 4 Palladiumatomen in 4h) 0,210; 0,710; 0,500. Die Struktur ist ähnlich der von Mn_2Hg_5 und zeigt Verwandtschaft zu den $H.-R.-\gamma$ -Phasen.

The powder pattern of Pd_2Hg_5 can be indexed on the basis of a tetragonal cell with $a=9,46_3$ Å, $c=3,03_1$ Å, $c/a=0,320_3$, having 14 atoms per cell. The space group is probably $P4/mbm-D_{4h}^5$ with 8 mercury atoms in position 8i) 0,040; 0,220; 0,000; 2 mercury atoms in 2d) 0,500; 0,000; 0,500, and 4 palladium atoms in 4h) 0,210; 0,710; 0,500. The structure is somewhat similar to that of Mn_2Hg_5 and shows relationship to $H.-R.-\gamma$ -phases.

Aus dem Verlauf der Dampfdruckisothermen im Zweistoffsystem Quecksilber—Palladium konnten Jangg und $Gr\"oll^1$ auf die Existenz von 2 intermetallischen Verbindungen mit den Zusammensetzungen 17,5 Gew% $Pd = Pd_2Hg_5$ und 34,6 Gew% Pd = PdHg schließen. Dieser Befund steht in Übereinstimmung mit den Ergebnissen von Bittner und $Nowotny^2$, die neben anderen intermediären Phasen auch diese zwei beobachten konnten. Ihnen gelang die Strukturaufklärung der Phase PdHg; über die Struktur der Phase Pd_2Hg_5 konnten sie jedoch keine näheren Angaben machen. Sie vermuteten eine den $H.-R.-\gamma$ -Phasen ähnliche, jedoch komplexere Struktur.

¹ G. Jangg und W. Gröll, Z. Metallkde, im Druck.

² H. Bittner und H. Nowotny, Mh. Chem. 83, 287 (1952).

Die für die eigenen Untersuchungen benötigten Palladium—Quecksilberlegierungen wurden von Jangg und Gröll aus ihren Versuchen zur Dampfdruckmessung an Palladium-Amalgamen zur Verfügung gestellt. Da diese Autoren bei ihren Arbeiten zur Dampfdruckmessung das Quecksilber aus quecksilberreichen Amalgamen langsam und unter ständiger Messung des sich einstellenden Quecksilberdampfdrucks abdestillierten, konnte mit einem nach anderen Methoden kaum erreichbaren Grad an Sicherheit der Gleichgewichtszustand der Proben als gegeben angenommen werden. Die für die Strukturaufklärung der Phase Pd₂Hg₅ verwendete Probe besaß genau die der Formel entsprechende Zusammensetzung und stammte aus einem Versuch, der im Moment des Steilabfalls der Dampfdruckisotherme unterbrochen worden war.

Von den pulverförmigen oder locker gesinterten Palladium—Queck-silberlegierungen wurden Debye—Scherrer-Aufnahmen angefertigt. Zur Verwendung kamen Cu-K α -Strahlung und eine Debye—Scherrer-Kamera mit 114,6 mm Durchmesser.

Die Phase Pd₂Hg₅ kristallisiert tetragonal mit den Gitterkonstanten

$$a = 9,46_3$$
 $c = 3,03_1$ $c/a = 0,320_3$.

Die Röntgendichte beträgt 14,87 g/cm³, in der Elementarzelle sind also zwei Formeleinheiten Pd₂Hg₅ enthalten.

Form und Größe der Elementarzelle lassen nahe Verwandtschaft zur Struktur von Mn_2Hg_5 vermuten. Ebenso wie bei Mn_2Hg_5 sind keine Interferenzen der Ordnungen (θkl) mit k ungerade zu beobachten. Nach $de\ Wet^3$ nehmen die Atome von Mn_2Hg_5 Punktlagen der Raumgruppe $P4/mbm-D_{4n}^5$ ein, wobei die Quecksilberatome die Lagen 2d) und 8i), die Manganatome die Lage 4h) besetzen.

Im Falle von $\mathrm{Pd_2Hg_5}$ konnte befriedigende Übereinstimmung der beobachteten Intensitäten mit den für Interferenzen der Ordnungen $(hk\theta)$ berechneten festgestellt werden, wenn die freien Parameter der Quecksilberatome in den Punktlagen 8i) zu $x=0.040\pm0.005,\ y=0.220\pm0.005$ und der freie Parameter der Palladiumatome in 4h) zu $x=0.210\pm0.005$ angenommen werden.

Eine Analyse der Intensitäten der Beugungslinien mit $l=2\,n+1$ führt zu dem Schluß, daß im Gitter von Pd₂Hg₅ zwei Quecksilberatome nicht, wie im Fall von Mn₂Hg₅, die Lage 2c), sondern die Lage 2d) einnehmen. Diese beiden Atomlagen unterscheiden sich durch eine Translation um c/2.

Die Möglichkeit einer der geringer symmetrischen Raumgruppen $P4b2-D_{2d}^7$ oder $P4bm-C_{4v}^2$, die sich ebenfalls mit den beobachteten Auslöschungsgesetzen vereinbaren lassen, kann nicht mit Sicherheit aus-

³ J. F. de Wet, Acta crystallogr. [Kopenhagen] **14**, 733 (1961).

Tabelle 1. Pulveraufnahme von Pd $_2\mathrm{Hg}_5,\,\mathrm{Cu}\text{-}\,\mathrm{K}\,\alpha\text{-}\mathrm{Strahlung}$

Index	$\sin^2 \theta \cdot 10^3$	$\sin^2 \theta \cdot 10^3$	Intensität	
Index	gef.	ber.	gef.	ber.
110		13,3		8
020		26,5		1
120		33,1		1
220	53,7	52,9	\mathbf{s}	33
001	65,3	64,0	SS	26
130	66,1	66,2	\mathbf{m}	67
111	77,8	77,8	m	72
230	86,5	86,1	SS	19
021		91,0		1
121	98,6	97,6	\mathbf{m}	61
040	106,0	106,0	st	155
140	113,6	112,5	st	137
$2\overline{21}$	118,1	117,5	sst	420
330	120,4.	119,2	m	75
131		130,8		0
240		132,4	· · · · ·	7
231	152,7	150,7	\mathbf{m}	74
340	166,2	165,5	ss	15
041)	100,2	170,5	55	(10
150	171,7	172,1	ss	$\begin{cases} \begin{array}{c} 10 \\ 2 \end{array} \end{cases}$
141	177,8	$172,1 \\ 177,2$	s	33
331	111,0	183,8	ъ	0
250		192,0		1
$\begin{array}{c} 250 \\ 241 \end{array}$		197,0	_	1
440	213,0	211,8	sm	37
350	213,0	$211,3 \\ 225,1$	5111	$\frac{37}{2}$
341	_	230,1 $230,2$		0
		236,2 $236,8$		(111
151	237,3	238,3	st	{111
060∫				1
160	_	244,9		0
251		256,7		66
002	258,6	258,1	m	1
260		264,8		(1
112	271,9	271,4	s— m	$\begin{cases} \frac{1}{39} \end{cases}$
450 ₅	-	271,4		1
441	_	276,5		0
022		284,6		(17
351	290,3	289,8	s	{ 1
122		291,3	~	$\frac{1}{29}$
360	298,5	297,9	S	29 16
061	304,6	304,0	SS	(67
161	310,5	309,6	m—st	25
222∫		311,2	a	$\frac{25}{28}$
132	325,0	324,4	s	28 (41
$\frac{261}{170}$	220.2	329,5	ma	$\begin{cases} \frac{41}{39} \end{cases}$
170}	330,3	331,0 331.0	\mathbf{m}	$\begin{cases} 39 \\ 2 \end{cases}$
550 ^J	- 927 4	331,0 336.2	o	38
451	337,4	336,2	S	90

Tabelle 1 (Fortsetzung)

Index	$\sin^2\theta \cdot 10^3$	$\sin^2 \theta \cdot 10^3$	Intensität	
mucx	gef.	ber.	gef.	ber.
460		344,2		2
270	351,4	350,8	SS	6
361	262 7	362,6	a+	(139
042	363,7	364,2	st	85
142	371,4	370,8	m	80
332	378,2	377,4	m	45
370	384,5	383,9	\mathbf{m}	42
242		390,7		5
171)	206 7	395,8		[14
551	396,7	395,8	m—st	142
560		403,8		3
202	410,0	409,0	SSS	16
271		415,6		7
080		423,7		0
342	424,5	423,8	sss	12
180)		430,3		(45
470 }	430,9	430,3	m	{ 3
152)		430,4		1
232		443,2		8
371)		448,8		(19
280	450,0	450,2	s	{ 22
252		450,3		1 1
561		468,6	_	1
442	470,3	470,2	s— m	35
660		476,6		1
352		483,4		2
380		483,4		3
081		488,5		7
570		489,9	_	4
181		495,2		1 15
471	495,6	495,2	\mathbf{s}	10
062^{+}		496,6		1 0
162		503,3		1
281		515,0	_	2
262		523,2		0
480		529,6		0
452	531,4	529,8	s	45
661		541,5		5
190		542,8		1
381		548,2		2
571	556,1	554,8	\mathbf{m}	∫ 68
362∫	550,1	556,3	111	∫ 38
290	563,4	562,7	s	j 1
670∫	000,1	562,7	э	$\begin{cases} 25 \end{cases}$
003		580,9		3
172)		589,4		(61
552	590,3	589,4	m—st	{ 4
580)		589,4		₹ 30

Tabelle 1	(For	tsetzung)
-----------	------	-----------

Index	$\sin^2\theta \cdot 10^3$	$\sin^2\theta \cdot 10^s$ ber.	Intensität	
Index	gef.		gef.	ber.
113	595,0	594,2	ss	13
481	595,0	594,5	s	14
462		602,7		4
023)		607,4		1 4
191}	608,5	607,8	\mathbf{m} —st	69
272	•	609,3		l 9

Tabelle 2. Interatomare Abstände

Atom	Nachbaratome	Interatomarer Abstand in Å-Einheiten	
$_{ m Hg}$	8 Hg	3,08	
$_{ m Hg}$	$2~\mathrm{Hg}$	3,00	
$_{ m Hg}^{\circ}$	$2~\mathrm{Hg}$	3,03	
$_{ m Hg}^{ m c}$	Hg	3,21	
Hg	$2~\mathrm{Pd}$	2,81	
Pd	$4~\mathrm{Hg}$	2,81	
Pd	$4~\mathrm{Hg}$	2,89	
Pd	$_{ m Hg}^{\circ}$	2,81	

geschlossen werden, doch dürften die Abweichungen der z-Parameter von den speziellen Lagen der Raumgruppe $P4/mbm-D_{4h}^5$ in diesem Fall nur gering sein.

Der Strukturvorschlag für $\mathrm{Pd}_2\mathrm{Hg}_5$ kann also wie folgt zusammengefaßt werden:

Der Aufbau der Elementarzelle läßt die bereits von Bittner und $Nowotny^2$ vermutete Verwandtschaft mit den $H.-R.-\gamma$ -Phasen erkennen. Stapelt man drei Elementarzellen in Richtung der c-Achse übereinander, so erhält man eine annähernd kubische Riesenzelle, wie sie für $H.-R.-\gamma$ -Phasen typisch ist. Diese Riesenzelle läßt sich in 27 etwa gleich große Unterzellen unterteilen, die im Durchschnitt 1,55 Atome enthalten.